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Abstract. We study the surface behavior of a semi-infinite smectogenic sample bounded by a solid wall,
in the presence of an external electric field. Our analysis is performed in the framework of a Landau-de
Gennes theory. For the sake of simplicity, we consider only the case in which, in the absence of field and
surfaces, a direct isotropic to smectic-A transition occurs, while in the presence of the electric field a
nonspontaneous nematic phase appears. Two new surface phases are identified, namely a parasmectic and
a surface-induced smectic phase. The shifts in the transition temperatures and the critical behavior of the
surface states are analyzed.

PACS. 64.70.Md Transition in liquid crystals – 68.35.Md Surface energy; thermodynamics properties –
64.10.+h General theory of equations of state and phase equilibria

1 Introduction

Liquids composed of anisotropic molecules can display a
rich variety of so-called mesophases [1]. The latter are in-
termediate states of matter between the isotropic (I) and
the solid crystalline phases. The least ordered of liquid
crystals is the nematic (N) one, where the molecules spon-
taneously align themselves with their long axes parallel.
The uniaxial nematic ordering can be described by the
symmetric traceless tensor Q = S(3n ⊗ n − 1)/2, where
1 is the identity tensor, n is the nematic director, which
gives the average molecular orientation, and 0 ≤ S ≤ 1
is the scalar order parameter characterizing the degree of
molecular orientation.

In the smectic-A (SA) phase, molecules are addition-
ally organized in layers perpendicular to the nematic di-
rector n. Therefore, the density ρ is periodically modu-
lated and can be approximated as ρ = ρ0[1 + (1/

√
2)ψ

cos(qsz + φ0)], where ρ0 is the average density, 2π/qs is
the layer spacing, φ0 is a reference phase, and ψ is the
smectic order parameter [1].

The phase transitions between the various liquid crys-
talline phases usually appear while varying temperature.
Another possibility is to apply external fields. In particu-
lar, when a material characterized by a positive dielectric
anisotropy is subjected to an electric field, the degree of
order is enhanced. In the simplest case of nematogenic
substances, the appearance of a paranematic phase and
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of a critical point in the paranematic–nematic transition
was predicted [2–4] and experimentally confirmed [5,6].
Even more rich behaviors emerge when smectogenic mate-
rials are considered. These were theoretically investigated
in the framework of a McMillan’s theory [7] and of a lat-
tice model [8]. The existence of a nonspontaneous nematic
phase and of a tricritical behavior of the nematic–smectic-
A transition was predicted and observed [9]. Motivated
by these experiments, a thorough analysis using a phe-
nomenological Landau-de Gennes approach was carried
out in reference [10]. All these theoretical investigations
were concerned only with the bulk behavior. However,
the experimental data show some unexplained features
that could be attributed to surface effects [9]. More pre-
cisely, the low-field part of the nematic order-parameter
isotherms displays a linear character. Additionally, a resid-
ual surface birefringence connected with smectic ordering
at the surfaces was measured. These observations are in
agreement with X-ray diffraction studies, that show con-
tinuous or discrete growth of smectic layers at surfaces [11,
12]. Moreover, molecular dynamics simulations indicate
that smectic ordering can be favored for steric reasons
close to substrates [13,14]. The effect of solid boundaries
in a presmectic fluid was also analyzed by de Gennes using
a Landau description [15] .

Summarizing, the combined influence of an external
electric field and of limiting surfaces can induce signifi-
cant changes in the thermodynamic behavior of smecto-
genic materials. These phenomena have not yet been an-
alyzed, because of the complexity of the system and of
the various interactions present. In this paper, by means
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of a Landau-de Gennes approach, we consider a semi-
infinite liquid crystalline sample bounded by a solid sur-
face. Motivated by the experimental observations [9], we
focus our attention on systems which display a direct
isotropic to smectic-A phase transition in the absence of
field and surfaces, with a nonspontaneous nematic phase
appearing under the application of an external electric
field. Following the idea of de Gennes [15], we describe
the interaction of the smectogenic material with the solid
substrate via a term linear in the smectic order param-
eter, assuming for the sake of simplicity that the direct
interaction of the solid interface with the nematic order
parameter is negligible. We compute phase diagrams in
the temperature–electric field plane for various strengths
of the surface coupling. The existence of parasmectic and
surface-induced smectic phases is predicted. It is also
shown that the bulk tricritical point is replaced at the
surface by a critical one.

The paper is organized as follows: in Section 2 we
present the general theoretical framework, formulating the
Euler-Lagrange equations that govern the evolution of the
order parameters profiles. In Section 3, solving numeri-
cally these equations, we obtain the phase diagrams de-
scribing the surface behavior of a semi-infinite smectogenic
sample under the influence of an external electric field.
Finally, in Section 4, we discuss our main results and the
possible outlooks.

2 Landau-de Gennes theory

Let us consider a thermotropic liquid-crystalline mate-
rial undergoing a direct isotropic–smectic-A transition on
cooling. In the frame of a Landau-de Gennes theory of
phase transitions, in the absence of elastic distortions,
such a system can be described by the free-energy func-
tional [1]

Fbulk =

∫ [
fN(T, S) + fA(T, ψ) + fAN(S, ψ)

+
1

2
LN (∇S)2 +

1

2
LA (∇ψ)2

]
dV , (1)

where fN(T, S) and fA(T, S) are the nematic and smectic
contributions, respectively, and fAN(S, ψ) is a coupling
term

fN(T, S) =
1

2
aN(T − T ∗N)S2 +

1

3
bNS

3 +
1

4
cNS

4 ,(2a)

fA(T, ψ) =
1

2
aA(T − T ∗A)ψ2 +

1

4
cAψ

4 , (2b)

fAN(S, ψ) = γSψ2 +
1

2
λS2ψ2 . (2c)

In the latter equations T ∗N and T ∗A are the supercooling
temperature limits of the isotropic and nematic phases,
respectively, and T is the temperature. In order to induce
a direct I − SA transition, a sufficiently strong coupling
constant γ is required [10]. The saturation term propor-
tional to λ allows for reentrant nematic behavior; in the

following, for the sake of simplicity, we shall not ana-
lyze this case. For the Landau coefficients appearing in
equations (2), we use the values given in reference [9]:
aN = 0.2 × 107 erg/K cm3, bN = −1.85 × 107 erg/cm3,
cN = 2.5 × 107 erg/cm3, aA = 0.13 × 107 erg/K cm3,
cA = 0.25 × 107 erg/cm3, γ = −0.5 × 107 erg/cm3, λ =
0.65×107 erg/cm3, T ∗N−T

∗
A = 0.5 K. The elastic constants

LN and LA are related to the nematic elastic constant K
and to the smectic compressibility modulus B, namely
K = LNS

2, B = LAψ
2q2

s . Since the characteristic length√
K/B is of the order of the interlayer spacing 2π/qs [1],

then LA/LN ∼ (S/ψ)2 ∼ 1. In our analysis we therefore
set LA = LN.

In the presence of an external electric field E, a fur-
ther contribution to the free-energy must be added. To
the lowest order it reads

Felectric =

∫
fE(E,S, ψ) dV , (3a)

fE(E,S, ψ) = µE2S +
1

2
µ′E2ψ2 , (3b)

where the first term in the right hand side of equation (3b)
describes the dielectric coupling and the second one the so-
called smectic electrostriction. For strong smectic-nematic
coupling γ, which is the case that we consider, the smectic
electrostriction is negligible [10]. Therefore, we put µ′ = 0.
The coupling constant µ is proportional to the molecular
dielectric anisotropy εa0, µ = −εa0/12π. In the following
we shall analyze the case of positive molecular dielectric
anisotropy εa0 > 0, which leads to an enhancement of
the nematic ordering. With our choice of parameters, the
application of the electric field induces a nonspontaneous
nematic phase [9].

Near a solid surface, for steric reasons, the smectic or-
dering might be enhanced [16]. Let us then consider a
semi-infinite sample filling the half space z ≥ 0. The pres-
ence of the solid boundary at z = 0 introduces, at the
lowest order, the surface contribution [15]

Fsurface = −w

∫
ψ(z = 0) dxdy , (4)

with w > 0. Let us note that terms linear in ψ are forbid-
den in the bulk as the choice of the origin of the reference
frame is arbitrary. This is no more true when a boundary
is present that fixes the position of the smectic layers.

The free-energy of the entire system reads

F = Fbulk + Felectric + Fsurface . (5)

Minimization of the latter

δF = 0⇒ δ

∫ ∞
0

[
fN(T, S) + fA(T, ψ)

+fAN(S, ψ) + fE(E,S, ψ)

+
1

2
LN

(
dS

dz

)2

+
1

2
LA

(
dψ

dz

)2
]

dz

−wδψ(z = 0) = 0 , (6)
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leads to the Euler-Lagrange equations defining the equi-
librium order parameters profiles S(z) and ψ(z)

LN
d2S

dz2
=
∂fN

∂S
+
∂fAN

∂S
+
∂fE

∂S
, (7a)

LA
d2ψ

dz2
=
∂fA

∂ψ
+
∂fAN

∂ψ
, (7b)

with the boundary conditions

dS

dz

∣∣∣∣
z=0

=
dS

dz

∣∣∣∣
z=∞

=
dψ

dz

∣∣∣∣
z=∞

= 0, LA
dψ

dz

∣∣∣∣
z=0

= −w.

(8)

The Euler-Lagrange equations can be put into a more
convenient form by introducing the following rescaled
quantities

t =
T − T ∗N
TNI − T ∗N

, t∗A =
T ∗A − T

∗
N

TNI − T ∗N
, γN =

cN

bN
,

α =
aA

aN
, γA =

cA

aN(TNI − T ∗N)

Γ =
γ

aN(TNI − T ∗N)
, Λ =

λ

aN(TNI − T ∗N)
,

e =

√
−µ

aN(TNI − T ∗N)
E ,

ξ =

√
LN

2aN(TNI − T ∗N)
,

ζ = z/ξ , h =
ξ

LA
w , L =

LA

LN
, (9)

where

TNI = T ∗N +
2b2N

9aNcN
(10)

is the nematic–isotropic transition temperature of the un-
coupled system. Substituting (9) into (7) and (8) gives

d2S

dζ2
= F (S, ψ)

=
1

2

[
tS +

9

2
γNS

2 +
9

2
γ2

NS
3 + Γψ2 + ΛSψ2 − e2

]
,

(11a)

d2ψ

dζ2
= G(S, ψ)

=
1

2L

[
α(t− t∗A)ψ + γAψ

3 + 2ΓSψ + ΛS2ψ
]
, (11b)

dS

dζ

∣∣∣∣
ζ=0

=
dS

dζ

∣∣∣∣
ζ=∞

=
dψ

dζ

∣∣∣∣
ζ=∞

= 0,
dψ

dζ

∣∣∣∣
z=0

= −h.

(11c)

In order to determine the order parameters profiles
S(ζ) and ψ(ζ), the boundary value problem (11) has to
be solved numerically. It is then convenient to analyze

first the asymptotic behavior of S(ζ) and ψ(ζ), as they ap-
proach the bulk values SB and ψB. The latter are the order
parameters which minimize the bulk free-energyFbulk. By
setting δS = S − SB, δψ = ψ − ψB and linearizing equa-
tions (11a, 11b), one obtains

d2

dζ2

(
δS
δψ

)
= A

(
δS
δψ

)
, (12)

where the constant matrix A reads

A =

 ∂F
∂S

∣∣
(SB,ψB)

∂F
∂ψ

∣∣∣
(SB,ψB)

∂G
∂S

∣∣
(SB,ψB)

∂G
∂ψ

∣∣∣
(SB,ψB)

 . (13)

Diagonalizing the matrix A and keeping only the decaying
solutions, one arrives at(
δS(ζ)
δψ(ζ)

)
= Z

(
exp(−

√
D1ζ) 0

0 exp(−
√
D2ζ)

)
Z−1

(
a
b

)
,

(14)

where Z contains the eigenvectors of the matrix A ar-
ranged in columns, D1 and D2 are the corresponding
eigenvalues, and a, b are integration constants. The
asymptotic boundary conditions are then obtained by dif-
ferentiating the equation above (14)

d

dζ

(
δS(ζ)
δψ(ζ)

)
= −Z

(√
D1 0
0
√
D2

)
Z−1

(
δS(ζ)
δψ(ζ)

)
. (15)

3 Analysis

The Euler-Lagrange equations (11a, 11b) were solved nu-
merically using a standard finite difference scheme with
deferred correction and Newton iteration [17]. We used the
exact boundary conditions at ζ = 0, while those at infinity
were substituted by the asymptotic ones (15) evaluated at
sufficiently large ζ. When multiple solutions were present,
the one corresponding to the lowest total free-energy (5)
was selected.

Let us focus our attention on the behavior of the
surface order parameters, namely, S0 ≡ S(ζ = 0) and
ψ0 ≡ ψ(ζ = 0). The corresponding phase diagrams are
presented in the plane of the reduced field e and temper-
ature t. They were determined by analyzing the behavior
of S0 and ψ0 for fixed field e as a function of the tem-
perature t, or equivalently, for fixed temperature t as a
function of the field e. The material parameters were kept
fixed, while the effect of the surface coupling constant h
was investigated, as displayed in Figures 1–3.

When no surface coupling is present (h = 0), the order
parameters profiles are flat: the surface order parameters
S0 and ψ0 coincide with the bulk ones. The correspond-
ing phase diagram is shown in Figure 1. If there is no
electric field e, a direct isotropic to smectic-A transition
occurs on cooling. However, for infinitesimally small field,
the isotropic phase is replaced by a paranematic (pN)
one. The latter is characterized by S > 0 and ψ = 0.
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Fig. 1. Surface phase diagram in the (e, t) plane for h = 0. The
solid lines refer to first-order transitions, the dashed line to a
second-order one. The outer graphs display the behavior of S0

(solid line) and ψ0 (dashed line) as a function of the reduced
temperature t for the three values of the reduced electric field
e = 0.1, e = 0.3, e = 0.8 indicated by the dotted-dashed lines
in the phase diagram.

As the electric field is increased, the pN − SA transition
temperature shifts toward higher values. Above a suit-
able value of the field, a nonspontaneous nematic (NSN)
phase appears between the paranematic and the smec-
tic ones, separated from them by first-order transition
lines. The one delimiting the pN−NSN phases terminates
at the critical point CP, while the other one transforms
into a second-order transition line above the tricritical
point TCP. This phase diagram summarizes the results
presented in [9].

The case of small surface coupling h is analyzed in
Figure 2. The pN and the NSN bulk phases are replaced
by a parasmectic (pS) and a surface-induced-smectic (SIS)
phase, respectively. They are both characterized by S > 0
and ψ > 0. The bulk tricritical point TCP transforms now
into a critical point CP as the smectic SA and SIS phases
have the same symmetry.

Further increasing of the surface coupling leads to the
behavior displayed in Figure 3. Only smectic and paras-
mectic phases are present, separated by a first-order tran-
sition line terminating at a critical point. Finally, above
a threshold value h ≥ ht = 0.39, the whole (e, t) plane is
occupied by the smectic SA phase.

One should also notice that the transition tempera-
tures at the surface are generally shifted with respect to
the bulk ones. This is illustrated in Figure 4 for the case
of the pS to SA transition in the absence of electric field.
For low coupling h, the surface transition temperature co-
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Fig. 2. Same as Figure 1 but for h = 0.01.
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Fig. 3. Same as Figure 1 but for h = 0.35. The outer graphs
correspond to e = 0.1 and e = 0.3.

incides with the bulk one. Above a certain threshold, that
for the case shown in Figure 4 corresponds to h = 0.235,
the surface transition temperature begins to shift toward
higher values, while at the same time the jumps in the
order parameters decrease. The derivative of the smec-
tic surface order parameter ψ0 develops a discontinuity at
the bulk transition temperature. No such feature is ap-
parent in S0, which is not directly coupled to the surface.



P. Galatola et al.: Surface effects in smectic transitions 55

0.8 1.2
t

0.0

0.4
S0

b

a

c

(a)

d

b

0.8 1.2
t

0.0

1.0

ψ0
a

b

b

d

c

(b)

Fig. 4. Surface order parameters S0 (a) and
ψ0 (b) as a function of the reduced tempera-
ture t for e = 0. The surface coupling constant h
is equal to h = 0 (curves a), h = 0.2 (curves b),
h = 0.3 (curves c), and h = 0.4 (curves d).
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Fig. 5. Same as Figure 4 but for e = 0.3.
Here the surface coupling constant h is equal to
h = 0.01 (curves a), h = 0.1 (curves b), h = 0.2
(curves c), and h = 0.25 (curves d).

Above a critical value of h, equal to h = 0.39 for the case
considered here, the transition disappears. A similar be-
havior was found in the boundary-layer transition in ne-
matic liquid crystals [18]. Figure 5 shows the effect of the
surface coupling when an external electric field is present,
such that a nonspontaneous nematic appears in the bulk.
As h is increased, the SA to SIS surface transition pro-
gressively disappears, while remaining at the same tem-
perature as the corresponding SA to NSN bulk transition.
At the same time, the SIS to pS surface transition is not
shifted with respect to the corresponding NSN to pN bulk
one. However, as the surface coupling is further increased,
the SIS to pS surface transition begins to shift as before.
Correspondingly, it becomes less pronounced, until it dis-
appears at the critical point.

4 Conclusions

The phase behavior of liquid-crystal systems is strongly
affected by the proximity of boundaries. In the past, var-
ious theoretical [18–21] and experimental [22] investiga-
tions have been aimed at understanding the influence of
the nematic-surface interactions on the local ordering at
interfaces. As it has been shown, the presence of a bound-
ary can lead to a variety of interesting phenomena as, e.g.,
temperature shifts of the phase transitions and different
transitions between surface-oriented states. No such thor-
ough analysis has been performed in the case of smec-
togenic materials, even if, as suggested by experiments

[12,9], in this situation the presence of a surface can stron-
gly influence the thermodynamic behavior of the system.

In this paper, by means of a Landau-de Gennes ap-
proach, we have analyzed the surface phase diagram of a
semi-infinite liquid crystalline sample displaying a direct
isotropic to smectic-A transition in the bulk. The com-
bined effect of an external electric field and of an ordering
solid surface has been analyzed. The Euler-Lagrange equa-
tions describing the equilibrium order parameters profiles
have been solved exactly using a standard finite difference
scheme with deferred correction and Newton iteration [17].
Two new surface phases, namely a parasmectic and a
surface-induced smectic phase have been described. The
existence of two surface critical points has been predicted,
one corresponding to the bulk critical point terminating
the paranematic to nonspontaneous nematic transition,
and the other one replacing the bulk tricritical point of the
nematic to smectic-A transition. Shifts in the surface tran-
sition temperatures have been predicted, similarly to the
case of nematogenic materials. An experimental verifica-
tion of these results is still lacking and could be performed
by means of surface X-ray scattering measurements.

To conclude, we note that our continuum model ap-
plies only when the correlation length ξ is sufficiently large
with respect to the thickness of the smectic layers. This is
indeed the case of some smectogenic materials that have
been analyzed in the past, without however investigating
the effect of an external electric field [11]. Moreover, for
the sake of simplicity, in this analysis we have not taken
into account the possibility of a direct coupling of the ne-
matic order parameter S with the surface. As it has been
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pointed out in reference [16], for small ξ values such a cou-
pling may lead to a sharp smectic interface occurring at
a finite distance from the solid interface. We finally note
that the case of a sample having a finite thickness com-
parable with the smectic layers’ distance, that we have
not considered here, is much more complex to tackle, as
frustration effects are expected to occur [15].

We thank G. Barbero for fruitful discussions. M.Ż. gratefully
acknowledges MURST for financial support in the framework
of the collaboration between Politecnico di Torino and Raman
Research Institute of Bangalore.
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